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We present the results of a search for pair production of a heavy top-like (t′) quark decaying
to Wq final states using data corresponding to an integrated luminosity of 5.6 fb−1 collected by
the CDF II detector in pp collisions at

√
s = 1.96 TeV. We perform parallel searches for t′ → Wb

and t′ → Wq (where q is a generic down-type quark) in events containing a lepton and four or
more jets. By performing a fit to the two-dimensional distribution of total transverse energy versus
reconstructed t′ quark mass, we set upper limits on the t′t̄′ production cross section and exclude a
standard model fourth-generation t′ quark decaying to Wb (Wq) with mass below 358 (340) GeV/c2

at 95% CL.
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covery [1, 2], the data collected at the Tevatron have been
actively used to test the validity of the SM predictions
of the top quark’s properties. The top quark is unique
because of its large mass of 173.3 ± 1.1 GeV/c2 [3],
which distinguishes it from the other fermions of the
SM. It is similar in mass to the weak force carriers (W
and Z) as well as the expected mass range for the pro-
posed SM Higgs boson [4]. One of the simplest exten-
sion of the SM is a fourth chiral generation of massive
fermions. A fourth generation is predicted in a number
of theories [5, 6] and is compatible with precision elec-
troweak data [7, 8]. Furthermore, its existence would
allow for a higher Higgs boson mass [9] and relax the
tension between indirect predictions which point to very
low masses [4] and direct searches [10, 11].

Fourth generation fermions with masses much higher
than current lower bounds [12] would have sizable radia-
tive corrections to the quark scattering amplitude [13], so
the masses of heavy top-like (t′) quark and heavy down-
type (b′) quarks should be in the range of a few hundred
GeV/c2 [8]. These ranges are accessible at the Tevatron
collider. In addition, a small mass splitting between t′

and b′ is preferred, such that m(b′)+m(W ) > m(t′), and
t′ decays predominantly to Wq (a W boson and a down-
type quark q = d, s, b) [8, 12, 14]. Previously published
limits have excluded a b′ at masses below 372 GeV/c2 [15]
and a t′ at masses below 256 GeV/c2, assuming that the
t′ decays to Wq [16].

In this Letter we report on a search for a t′ quark de-
caying to Wq, where q can be either a generic down-type
quark or specifically a b quark. We analyze a data set of
pp collisions at

√
s = 1.96 TeV corresponding to an in-

tegrated luminosity of 5.6 fb−1 collected by the Collider
Detector at Fermilab (CDF II) which is described else-
where [17]. We search for pair production of such quarks
using events characterized by a high-pT lepton, large
missing transverse energy E/T [18] and multiple hadronic
jets. We assume that the new quark is heavier than the
top quark and it is produced by strong interaction pro-
cesses. With respect to [16] the analysis described herein
utilizes a data sample approximately seven times larger,
and adds a parallel search wherein it is assumed that the
t′ decays to Wb.

The data events used in the analysis are collected by
triggers that identify at least one high-pT e or µ can-
didate [19] or by a trigger requiring E/T plus jets [20].
Events are retained only if the electron or muon candi-
date has pT ≥ 20 (25 for the t′ →Wq search) GeV/c and
satisfies the typical CDF identification and isolation re-
quirements [19]. Jets are reconstructed using a fixed cone
algorithm of radius 0.4 in azimuth (φ) - pseudorapidity
(η) space [18] and their energy is corrected for detector
effects [21]. We require at least four jets with ET ≥ 20
GeV and |η| < 2.0. Missing transverse energy is recon-
structed using fully corrected calorimeter and muon in-
formation [19] and required to have magnitude≥ 20 GeV.

Selection requirements by search
t′ →Wq t′ →Wb

lepton pT ≥ 25 GeV/c lepton pT ≥ 20 GeV/c
≥ 4 jets with ET ≥ 20 GeV ≥ 4 jets with ET ≥ 20 GeV
2 jets with ET ≥ 25 GeV

E/T ≥ 20GeV E/T ≥ 20GeV
MT,W > 20 GeV/c2 ≥ 1 jet identified

E/T,sig > −0.05 ·MT,W + 3.5 as coming from a b-jet
Requirements on ∆φ between

lead jet ET or lepton pT and E/T

TABLE I: Summary of selection criteria

For the t′ → Wb search at least one of the jets must be
identified as having originated from a bottom quark (b-
tagged) by a secondary vertex tagging algorithm [22]. In
order to reduce the contribution of the multijet (QCD)
background for the t′ →Wq search we make some addi-
tional requirements. We ask that at least two of the jets
have ET ≥ 25 GeV, that MT,W > 20 GeV/c2 and that
E/T,sig> −0.05 ·MT,W + 3.5, where MT,W is the trans-
verse leptonically decaying W boson mass, and E/T,sig is
the E/T significance [23].

The main contribution to the selected sample of events
comes from tt production, which is modeled using the
pythia v6.216 Monte Carlo (MC) generator [24] assum-
ing mt = 172.5 GeV/c2. The alpgen [25] v2.10 matrix-
element generator interfaced to pythia v6.325 is used to
simulate W+jets and Z/γ∗+ jets events. The W+jets
samples are generated separately for W + bb + jets,
W + cc + jets, W + c + jets and W + light flavor. Other
backgrounds include diboson production (WW,WZ,ZZ)
modeled with pythia, single top-quark production sim-
ulated using madgraph+pythia [24, 26] and multi-jet
QCD events modeled using a jet-triggered data sample
normalized to a background-dominated region at low E/T .
The signal sample of t′t̄′ production is generated with
pythia. The detector response in all MC samples is
modeled by a geant3-based detector simulation [27].

When examining control regions for the t′ → Wq
search, defined by events having less than four jets but
passing all the other selection criteria, it was observed
that the MC under-predicted events in the tails of jet ET
and lepton pT distributions. For events with electrons
this observed mis-modeling was found in events with a
high ET lead (highest ET ) jet or high lepton pT ; for
events with muons the discrepancy was present for high
lepton pT . Since for misreconstructed events a correla-
tion between the misreconstructed object and the E/T is
expected, cuts are placed on the ∆φ between the physics
object in question and the E/T . For electron events with
lead jet ET ≥ 160 GeV it is required that the ∆φ be-
tween the E/T and the lead jet be at least 0.6. For elec-
tron events with lepton pT ≥ 120 GeV/c it is required
that the ∆φ between the lepton and the E/T be less than



5

2.6. For muon events there are two categories: muons
coming from high-pT lepton triggers, and muons from
triggers based on high E/T plus jets. For muons in the
first category if the lepton pT is greater than 120 GeV/c
it is required that the ∆φ between the lepton and the
E/T be less than 2.6. For muons in the second category
if the lepton pT is greater than 120 GeV/c it is required
that the ∆φ between the lepton and the E/T be between
0.4 and 2.6. These cuts only reduce our signal efficiency
by 0.5%. Our selection requirements for both searches
are summarized in Table I. After all selection and trig-
ger requirements we observe 1,441 (4,390) events for the
t′ →Wb (Wq) search.

The total transverse energy (HT ), defined as

HT =
∑
jets

ET + ET,` + E/T , (1)

serves as a good discriminator between standard model
and new physics processes associated with production of
high mass particles. In addition we make use of the as-
sumption that the t′ decay chain is identical to the one of
the top quark, and reconstruct its mass (Mreco) using a
χ2-based fit of the kinematic properties of final t′ decay
products, the same technique utilized in top quark mass
measurement analyses [28].

We perform the search for a t′ signal by employing a
two-dimensional (2D) binned likelihood fit in both HT

and Mreco. In order to improve the discrimination be-
tween potential t′ signal and SM backgrounds, we split
the events into four samples, based on the number of jets
(exactly 4 or ≥ 5), and good or poor mass reconstruc-
tion χ2 (χ2 < 8 and χ2 ≥ 8). The sample with exactly
4 jets and good χ2 has the largest statistics due to the
fact that the majority of tt events (61% [65%] out of all
≥ 4 jet tt events when [not] requiring a jet tagged as
a b quark) fall into this category. The t′ mass recon-
struction is best in this category but the t′t̄′ events are
distributed more uniformly than tt events among all four
categories of events. To ensure sufficient MC statistics
on the high energy tails, we developed an algorithm that
merges bins with low MC statistics together into super-
bins. The super-bins are defined by the requirement that
each super-bin in a template has a relative uncertainty
due to MC statistics below 40%.

The fit is conducted simultaneously for four different
sets of templates. The likelihood is defined as the prod-
uct of the Poisson probabilities for observing ni,k events
in the bin i, k of (HT ,Mreco). The expected number of
events in each bin, µi,k, is given at base by the sum over
all sources indexed by j:

µi,k =
∑
j

Ljσjεikj . (2)

Here the Lj are the integrated luminosities, the σj are
the cross sections, and the εikj are the efficiencies per bin

of (HT ,Mreco). We calculate the likelihood as a function
of the t′t̄′ cross section, and apply Bayes’ theorem with
a uniform prior in σ to obtain a 95% CL upper limit or
measure the production rate of t′t̄′ events.

The production rates for t′t̄′ events, W + jets in the 4-
jet bins, and W + jets events in the ≥ 5 jet bins are three
unconstrained independent parameters in the fit. Pro-
duction rates for tt, single top, dibosons and Z+jets [30–
32] are constrained to their theoretically predicted values
and uncertainties. We consider systematic uncertainties
that affect only the normalization as well as those affect-
ing the normalization and shape of the distributions. The
normalization uncertainties and their magnitudes are: in-
tegrated luminosity (5.6%), lepton ID scale factors (1%),
uncertainty on the parton distribution functions (1%)
and wholly correlated theory uncertainty on the t′ [33]
and tt [30] cross section (10%). The shape and nor-
malization systematics and their impact on the expected
limit at a t′ mass of 360 GeV/c2 (near the observed limit)
are : jet energy scale (2.5%), the Q2 scale at which W+
jets MC events are generated (2.5%), initial and final
state radiation (2.5%) and, for the t′ →Wb search only,
uncertainty on the b-tagging of jets (<2.5%). All of the
sources of systematic errors are treated in the likelihood
as nuisance parameters constrained within their expected
distributions. We adopt the profiling method [29] for
dealing with these parameters, i.e. the likelihood is max-
imized with respect to the nuisance parameters. For nor-
malization and shape uncertainties we use a vertical mor-
phing technique [29] to change both shape and normal-
ization when fitting. For these parameters we interpolate
quadratically for less than one σ variance and extrapo-
late linearly for beyond one σ variance in the expectation
value. Taking this into account the likelihood takes the
following expression:

L(σt′ t̄′ |ni,k) =
∏

i,k,m,j

P (ni,k|µi,k)×G(νm|ν̃m, σνm) (3)

×fX(νj |ν̃j , σνj )

where νm are the nuisance parameters used in the morph-
ing parameters (constrained by gaussian G terms to their
expectation) and νj are the nuisance parameters used in
non-morphing parameters (constrained by log normal fX
terms to their expectations), such as σtt, Lj and etc.
ν̃m,j are their central nominal values and σνm,j

are their
uncertainties.

We test the sensitivity of our method by drawing pseu-
doexperiments from standard model distributions i.e., as-
suming no t′ contribution. The expected 95% CL upper
limits on the t′t̄′ production rate as a function of t′ mass,
for a t′ decaying to Wb and Wq (assuming in either case
a 100% branching ratio) are shown in Fig. 1. The dashed
line is the theoretical prediction for a fourth generation
t′ with SM couplings [33].

We perform the analysis fit on the data which shows no
significant excess from t′t̄′ production. Results expressed
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FIG. 1: Observed and expected 95% CL upper limits as a
function of the mass of the t′ quark, for a t′ decaying to Wb
(upper) and Wq (lower) with 100% branching ratio. The light
and dark gray areas show the ±1σ and ±2σ areas around the
expected limits. The dashed line is the theory expectation.

as a 95% CL upper limit on the cross section are shown
in Fig. 1. The individual limits along with the expected
ones from pseudo-experiments are listed in Table II and
III.

Distributions of HT and Mreco comparing the data
with the fit to the backgrounds plus a signal contribu-
tion are shown in Figs. 2 and 3. The backgrounds are
normalized to their fitted results and the t′ signal with
mass of 360 (350 for t′ → Wq) GeV/c2 is normalized to
its 95% CL upper limit value.

In conclusion, we present a search for pair production
of a t′ quark decaying to Wq, where q can be a generic
down-type quark or specifically a b quark. Having ob-
served no excess attributable to t′t̄′ production, we ex-
clude at 95% CL a t′ quark with mass below 358 (340)
GeV/c2 for t′ → Wb(Wq). These are the most strin-
gent limits set on such a quark at this time. While these
direct limits are set on a fourth generation massive up-
like quark t′, this analysis is sensitive to models of other

m(t′) (GeV/c2) expected limit (pb) observed limit (pb)

180 1.757 +0.729
−0.519 1.814

200 0.563 +0.198
−0.178 0.581

220 0.209 +0.099
−0.058 0.242

240 0.142 +0.059
−0.041 0.139

250 0.121 +0.047
−0.036 0.113

260 0.104 +0.043
−0.029 0.106

280 0.082 +0.034
−0.025 0.088

300 0.065 +0.029
−0.018 0.076

320 0.052 +0.023
−0.013 0.062

340 0.044 +0.019
−0.011 0.057

350 0.040 +0.019
−0.010 0.053

360 0.037 +0.017
−0.010 0.054

380 0.032 +0.013
−0.009 0.052

400 0.028 +0.011
−0.008 0.049

450 0.019 +0.007
−0.006 0.031

500 0.013 +0.006
−0.003 0.020

TABLE II: Expected, with ±1σ uncertainties, and observed

limits on t′t̄′ production cross section for a given mass assum-

ing the t′ quark decays to Wb.

massive quarks with similar signatures.
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